Общие положения. а - площадь сечения брутто

Колонна — это вертикальный элемент несущей конструкции здания, которая передает нагрузки от вышерасположенных конструкций на фундамент.

При расчете стальных колонн необходимо руководствоваться СП 16.13330 «Стальные конструкции».

Для стальной колонны обычно используют двутавр, трубу, квадратный профиль, составное сечение из швеллеров, уголков, листов.

Для центрально-сжатых колонн оптимально использовать трубу или квадратный профиль — они экономны по массе металла и имеют красивый эстетический вид, однако внутренние полости нельзя окрасить, поэтому данный профиль должен быть герметично.

Широко распространено применение широкополочного двутавра для колонн — при защемлении колонны в одной плоскости данный вид профиля оптимален.

Большое значение влияет способ закрепления колонны в фундаменте. Колонна может иметь шарнирное крепление, жесткое в одной плоскости и шарнирное в другой или жесткое в 2-х плоскостях. Выбор крепления зависит от конструктива здания и имеет больше значение при расчете т.к. от способа крепления зависит расчетная длина колонны.

Также необходимо учитывать способ крепления прогонов, стеновых панелей, балки или фермы на колонну, если нагрузка передается сбоку колонны, то необходимо учитывать эксцентриситет.

При защемлении колонны в фундаменте и жестком креплении балки к колонне расчетная длина равна 0,5l, однако в расчете обычно считают 0,7l т.к. балка под действием нагрузки изгибается и полного защемления нет.

На практике отдельно колонну не считают, а моделируют в программе раму или 3-х мерную модель здания, нагружают ее и рассчитывают колонну в сборке и подбирают необходимый профиль, но в программах бывает трудно учесть ослабление сечения отверстиями от болтов, поэтому бывает необходимо проверять сечение вручную.

Чтобы рассчитать колонну нам необходимо знать максимальные сжимающие/растягивающие напряжения и моменты, возникающие в ключевых сечениях, для этого строят эпюры напряжения. В данном обзоре мы рассмотрим только прочностной расчет колонны без построения эпюр.

Расчет колонны производим по следующим параметрам:

1. Прочность при центральном растяжении/сжатии

2. Устойчивость при центральном сжатии (в 2-х плоскостях)

3. Прочность при совместном действии продольной силы и изгибающих моментов

4. Проверка предельной гибкости стержня (в 2-х плоскостях)

1. Прочность при центральном растяжении/сжатии

Согласно СП 16.13330 п. 7.1.1 расчет на прочность элементов из стали с нормативным сопротивлением R yn ≤ 440 Н/мм2 при центральном растяжении или сжатии силой N следует выполнять по формуле

A n — площадь поперечного сечения профиля нетто, т.е. с учетом ослабления его отверстиями;

R y — расчетное сопротивление стали проката (зависит от марки стали см. Таблицу В.5 СП 16.13330);

γ с — коэффициент условий работы (см. Таблицу 1 СП 16.13330).

По этой формуле можно вычислить минимально-необходимую площадь сечения профиля и задать профиль. В дальнейшем в проверочных расчетах подбор сечения колонны можно будет сделать только методом подбора сечения, поэтому здесь мы можем задать отправную точку, меньше которой сечение быть не может.

2. Устойчивость при центральном сжатии

Расчет на устойчивость производится согласно СП 16.13330 п. 7.1.3 по формуле

A — площадь поперечного сечения профиля брутто, т.е.без учета ослабления его отверстиями;

R

γ

φ — коэффициент устойчивости при центральном сжатии.

Как видим эта формула очень напоминает предыдущую, но здесь появляется коэффициент φ , чтобы его вычислить нам вначале потребуется вычислить условную гибкость стержня λ (обозначается с чертой сверху).

где R y — расчетно сопротивление стали;

E — модуль упругости;

λ — гибкость стержня, вычисляемая по формуле:

где l ef — расчетная длина стержня;

i — радиус инерции сечения.

Расчетные длины l ef колонн (стоек) постоянного сечения или отдельных участков ступенчатых колонн согласно СП 16.13330 п. 10.3.1 следует определять по формуле

где l — длина колонны;

μ — коэффициент расчетной длины.

Коэффициенты расчетной длины μ колонн (стоек) постоянного сечения следует определять в зависимости от условий закрепления их концов и вида нагрузки. Для некоторых случаев закрепления концов и вида нагрузки значения μ приведены в следующей таблице:

Радиус инерции сечения можно найти в соответствующем ГОСТ-е на профиль, т.е. предварительно профиль должен быть уже задан и расчет сводится к перебору сечений.

Т.к. радиус инерции в 2-х плоскостях для большинства профилей имеет разные значения на 2-х плоскостей (одинаковые значения имеют только труба и квадратный профиль) и закрепление может быть разным, а следственно и расчетные длины тоже могут быть разные, то расчет на устойчивость необходимо произвести для 2-х плоскостей.

Итак теперь у нас есть все данные чтобы рассчитать условную гибкость.

Если предельная гибкость больше или равна 0,4, то коэффициент устойчивости φ вычисляется по формуле:

значение коэффициента δ следует вычислить по формуле:

коэффициенты α и β смотрите в таблице

Значения коэффициента φ , вычисленные по этой формуле, следует принимать не более (7,6/ λ 2) при значениях условной гибкости свыше 3,8; 4,4 и 5,8 для типов сечений соответственно а, b и с.

При значениях λ < 0,4 для всех типов сечений допускается принимать φ = 1.

Значения коэффициента φ приведены в приложении Д СП 16.13330.

Теперь когда все исходные данные известны производим расчет по формуле, представленной вначале:

Как уже было сказано выше, необходимо сделать 2-а расчета для 2-х плоскостей. Если расчет не удовлетворяет условию, то подбираем новый профиль с более большим значением радиуса инерции сечения. Также можно изменить расчетную схему, например изменив шарнирную заделку на жесткую или закрепив связями колонну в пролете можно уменьшить расчетную длину стержня.

Сжатые элементы со сплошными стенками открытого П-образного сечения рекомендуется укреплять планками или решеткой. Если планки отсутствуют, то устойчивость следует проверять на устойчивость при изгибно-крутильной форме потери устойчивости согласно п.7.1.5 СП 16.13330.

3. Прочность при совместном действии продольной силы и изгибающих моментов

Как правило колонна нагружена не только осевой сжимающей нагрузкой, но и изгибающем моментом, например от ветра. Момент также образуется если вертикальная нагрузка приложена не по центру колонны, а сбоку. В этом случае необходимо сделать проверочный расчет согласно п. 9.1.1 СП 16.13330 по формуле

где N — продольная сжимающая сила;

A n — площадь сечения нетто (с учетом ослабления отверстиями);

R y — расчетное сопротивление стали;

γ с — коэффициент условий работы (см. Таблицу 1 СП 16.13330);

n, Сx и Сy — коэффициенты принимаемые по таблице Е.1 СП 16.13330

Mx и My — моменты относительно осей X-X и Y-Y;

W xn,min и W yn,min — моменты сопротивления сечения относительно осей X-X и Y-Y (можно найти в ГОСТ-е на профиль или в справочнике);

B — бимомент, в СНиП II-23-81* этого параметра не было в расчетах, этот параметр ввели для учета депланации;

W ω,min – секторальный момент сопротивления сечения.

Если с первыми 3-мя составляющими вопросов быть не должно, то учет бимомента вызывает некоторые трудности.

Бимомент характеризует изменения, вносимые в линейные зоны распределения напряжений депланации сечения и, по сути, является парой моментов, направленных в противоположные стороны

Стоит отметить, что многие программы не могут рассчитать бимомент, в том числе и SCAD его не учитывает.

4. Проверка предельной гибкости стержня

Гибкости сжатых элементов λ = lef / i, как правило, не должны превышать предельных значений λ u, приведенных в таблице

Коэффициент α в данной формуле это коэффициент использования профиля, согласно расчету на устойчивость при центральном сжатии.

Также как и расчет на устойчивость данный расчет нужно сделать для 2-х плоскостей.

В случае если профиль не подходит необходимо изменить сечение увеличив радиус инерции сечения или изменив расчетную схему (изменить закрепления или закрепить связями чтобы уменьшить расчетную длину).

Если критическим фактором является предельная гибкость, то марку стали можно взять наименьшую т.к. на предельную гибкость марка стали не влияет. Оптимальный вариант можно вычислить методом подбора.

Posted in Tagged ,

    площадь общая (брутто) - Площадь поперечного сечения камня (блока) без вычета площадей пустот и выступающих частей. [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции EN gross area …

    площадь сечения болта брутто - A — [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции Синонимы A EN gross cross section of a bolt … Справочник технического переводчика

    опорная часть - 3.10 опорная часть: Элемент мостового сооружения, передающий нагрузку от пролетного строения и обеспечивающий необходимые угловые и линейные перемещения опорных узлов пролетного строения. Источник: СТО ГК Трансстрой 004 2007: Металлические… …

    ГОСТ Р 53628-2009: Опорные части металлические катковые для мостостроения. Технические условия - Терминология ГОСТ Р 53628 2009: Опорные части металлические катковые для мостостроения. Технические условия оригинал документа: 3.2 длина пролетного строения: Расстояние между крайними конструктивными элементами пролетного строения, измеренное по … Словарь-справочник терминов нормативно-технической документации

    Кладка сооружений из природных или искусственных камней. КЛАДКА ИЗ ПРИРОДНЫХ КАМНЕЙ Благодаря красивому чередованию рядов кладки, а также естественной окраске природных камней кладка из таких камней дает архитектору более широкие возможности… … Энциклопедия Кольера

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    - (США) (United States of America, USA). I. Общие сведения США государство в Северной Америке. Площадь 9,4 млн. км2. Население 216 млн. чел. (1976, оценка). Столица г. Вашингтон. В административном отношении территория США …

    ГОСТ Р 53636-2009: Целлюлоза, бумага, картон. Термины и определения - Терминология ГОСТ Р 53636 2009: Целлюлоза, бумага, картон. Термины и определения оригинал документа: 3.4.49 абсолютно сухая масса: Масса бумаги, картона или целлюлозы после высушивания при температуре (105 ± 2) °С до постоянной массы в условиях,… … Словарь-справочник терминов нормативно-технической документации

    Гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений (См. Гидротехнические… … Большая советская энциклопедия

    - (до 1935 Персия) I. Общие сведения И. государство в Западной Азии. Граничит на С. с СССР, на З. с Турцией и Ираком, на В. с Афганистаном и Пакистаном. Омывается на С. Каспийским морем, на Ю. Персидским и Оманским заливами, в… … Большая советская энциклопедия

    snip-id-9182: Технические спецификации на виды работ при строительстве, реконструкции и ремонте автомобильных дорог и искусственных сооружений на них - Терминология snip id 9182: Технические спецификации на виды работ при строительстве, реконструкции и ремонте автомобильных дорог и искусственных сооружений на них: 3. Автогудронатор. Используется при укреплении асфальтобетонного гранулята… … Словарь-справочник терминов нормативно-технической документации

4.5. Расчетную длину элементов следует определять умножением их свободной длины на коэффициент

согласно пп.4.21 и 6.25.

4.6. Составные элементы на податливых соединениях, опертые всем сечением, следует рассчитывать на прочность и устойчивость по формулам (5) и (6), при этом и определять как суммарные площади всех ветвей. Гибкость составных элементов следует определять с учетом податливости соединений по формуле

(11)

гибкость всего элемента относительно оси (рис.2), вычисленная по расчетной длине без учета податливости;

гибкость отдельной ветви относительно оси I - I (см.рис.2), вычисленная по расчетной длине ветви ; при меньше семи толщин () ветви принимают =0;

коэффициент приведения гибкости, определяемый по формуле

(12)

ширина и высота поперечного сечения элемента, см;

расчетное количество швов в элементе, определяемое числом швов, по которым суммируется взаимный сдвиг элементов (на рис.2,а - 4 шва, на рис.2,б - 5 швов);

расчетная длина элемента, м;

расчетное количество срезов связей в одном шве на 1 м элемента (при нескольких швах с различным количеством срезов следует принимать среднее для всех швов количество срезов);

коэффициент податливости соединений, который следует определять по формулам табл.12.

При определении диаметр гвоздей следует принимать не более 0,1 толщины соединяемых элементов. Если размер защемленных концов гвоздей менее 4 , то срезы в примыкающих к ним швах в расчете не учитывают. Значение соединений на стальных цилиндрических нагелях следует определять по толщине более тонкого из соединяемых элементов.

Рис. 2. Составные элементы

а - с прокладками; б - без прокладок

Таблица 12

Вид соединений

Коэффициент при

центральном сжатии

сжатии с изгибом

2. Стальные цилиндрические нагели:

а) диаметром толщины соединяемых элементов

б) диаметром > толщины соединяемых элементов

3. Дубовые цилиндрические нагели

4. Дубовые пластинчатые нагели

Примечание: Диаметры гвоздей и нагелей , толщину элементов , ширину и толщину пластинчатых нагелей следует принимать в см.

При определении диаметр дубовых цилиндрических нагелей следует принимать не более 0,25 толщины более тонкого из соединяемых элементов.

Связи в швах следует расставлять равномерно по длине элемента. В шарнирно-опертых прямолинейных элементах допускается в средних четвертях длины ставить связи в половинном количестве, вводя в расчет по формуле (12) величину , принятую для крайних четвертей длины элемента.

Гибкость составного элемента, вычисленного по формуле (11), следует принимать не более гибкости отдельных ветвей, определяемой по формуле

(13)

сумма моментов инерции брутто поперечных сечений отдельных ветвей относительно собственных осей, параллельных оси (см.рис.2);

площадь сечения брутто элемента;

расчетная длина элемента.

Гибкость составного элемента относительно оси, проходящей через центры тяжести сечений всех ветвей (ось на рис.2), следует определить как для цельного элемента, т.е. без учета податливости связей, если ветви нагружены равномерно. В случае неравномерно нагруженных ветвей следует руководствоваться п.4.7.

Если ветви составного элемента имеют различное сечение, то расчетную гибкость ветви в формуле (11) следует принимать равной:

(14)

определение приведено на рис.2.

4.7. Составные элементы на податливых соединениях, часть ветвей которых не оперта по концам, допускается рассчитывать на прочность и устойчивость по формулам (5), (6) при соблюдении следующих условий:

а) площади поперечного сечения элемента и следует определять по сечению опертых ветвей;

б) гибкость элемента относительно оси (см.рис.2) определяется по формуле (11); при этом момент инерции принимается с учетом всех ветвей, а площадь - только опертых;

в) при определении гибкости относительно оси (см.рис.2) момент инерции следует определять по формуле

моменты инерции поперечных сечений соответственно опертых и неопертых ветвей.

4.8. Расчет на устойчивость центрально-сжатых элементов переменного по высоте сечения следует выполнять по формуле

площадь поперечного сечения брутто с максимальными размерами;

коэффициент, учитывающий переменность высоты сечения, определяемый по табл.1 прил.4 (для элементов постоянного сечения );

коэффициент продольного изгиба, определяемый по п.4.3 для гибкости, соответствующей сечению с максимальными размерами.

Изгибаемые элементы

4.9. Расчет изгибаемых элементов, обеспеченных от потери устойчивости плоской формы деформирования (см. пп.4.14 и 4.15), на прочность по нормальным напряжениям следует производить по формуле

расчетный изгибающий момент;

расчетное сопротивление изгибу;

расчетный момент сопротивления поперечного сечения элемента. Для цельных элементов для изгибаемых составных элементов на податливых соединениях расчетный момент сопротивления следует принимать равным моменту сопротивления нетто , умноженному на коэффициент ; значения для элементов, составленных из одинаковых слоев, приведены в табл.13. При определении ослабления сечений, расположенные на участке элемента длиной до 200 мм, принимают совмещенными в одном сечении.

Таблица 13

Обозначение коэффициентов

Число слоев в элементе

Значение коэффициентов для расчета изгибаемых составных элементов при пролетах, м

Примечание. Для промежуточных значений величины пролета и числа слоев коэффициенты определяются интерполяцией.

4.10. Расчет изгибаемых элементов на прочность по скалыванию следует выполнять по формуле

расчетная поперечная сила;

статический момент брутто сдвигаемой части поперечного сечения элемента относительно нейтральной оси;

момент инерции брутто поперечного сечения элемента относительно нейтральной оси;

расчетная ширина сечения элемента;

расчетное сопротивление скалыванию при изгибе.

4.11. Количество срезов , равномерно расставленных в каждом шве составного элемента на участке с однозначной эпюрой поперечных сил, должно удовлетворять условию

(19)

расчетная несущая способность связи в данном шве;

изгибающие моменты в начальном и конечном сечениях рассматриваемого участка.

Примечание. При наличии в шве связей разной несущей способности, но

одинаковых по характеру работы (например, нагелей и гвоздей), несущие

способности их следует суммировать.

4.12. Расчет элементов цельного сечения на прочность при косом изгибе следует производить по формуле

(20)

составляющие расчетного изгибающего момента для главных осей сечения и

моменты сопротивлений поперечного сечения нетто относительно главных осей сечения и

4.13. Клееные криволинейные элементы, изгибаемые моментом , уменьшающим их кривизну, следует проверять на радиальные растягивающие напряжения по формуле

(21)

нормальное напряжение в крайнем волокне растянутой зоны;

нормальное напряжение в промежуточном волокне сечения, для которого определяются радиальные растягивающие напряжения;

расстояние между крайним и рассматриваемым волокнами;

радиус кривизны линии, проходящей через центр тяжести эпюры нормальных растягивающих напряжений, заключенной между крайним и рассматриваемым волокнами;

расчетное сопротивление древесины растяжению поперек волокон, принимаемое по п.7 табл.3.

4.14. Расчет на устойчивость плоской формы деформирования изгибаемых элементов прямоугольного сечения следует производить по формуле

максимальный изгибающий момент на рассматриваемом участке

максимальный момент сопротивления брутто на рассматриваемом участке

Коэффициент для изгибаемых элементов прямоугольного поперечного сечения, шарнирно закрепленных от смещения из плоскости изгиба и закрепленных от поворота вокруг продольной оси в опорных сечениях, следует определять по формуле

расстояние между опорными сечениями элемента, а при закреплении сжатой кромки элемента в промежуточных точках от смещения из плоскости изгиба - расстояние между этими точками;

ширина поперечного сечения;

максимальная высота поперечного сечения на участке ;

коэффициент, зависящий от формы эпюры изгибающих моментов на участке , определяемый по табл.2, 3 прил.4 настоящих норм.

При расчете изгибаемых моментов с линейно меняющейся по длине высотой и постоянной шириной поперечного сечения, не имеющих закреплений из плоскости по растянутой от момента кромке, или при коэффициент по формуле (23) следует умножать на дополнительный коэффициент Значения приведены в табл.2 прил.4. При =1.

При подкреплении из плоскости изгиба в промежуточных точках растянутой кромки элемента на участке коэффициент , определенный по формуле (23), следует умножать на коэффициент :

:= (24)

центральный угол в радианах, определяющий участок элемента кругового очертания (для прямолинейных элементов );

число промежуточных подкрепленных (с одинаковым шагом) точек растянутой кромки на участке (при величину следует принимать равной 1).

4.15. Проверку устойчивости плоской формы деформирования изгибаемых элементов двутаврового или коробчатого поперечного сечений следует производить в тех случаях, когда

ширина сжатого пояса поперечного сечения.

Расчет следует производить по формуле

коэффициент продольного изгиба из плоскости изгиба сжатого пояса элемента, определяемый по п.4.3;

расчетное сопротивление сжатию;

момент сопротивления брутто поперечного сечения; в случае фанерных стенок - приведенный момент сопротивления в плоскости изгиба элемента.

Элементы, подверженные действию осевой силы с изгибом

4.16. Расчет внецентренно-растянутых и растянуто-изгибаемых элементов следует производить по формуле

(27)

4.17. Расчет на прочность внецентренно-сжатых и сжато-изгибаемых элементов следует производить по формуле

(28)

Примечания: 1. Для шарнирно-опертых элементов при симметричных эпюрах

изгибающих моментов синусоидального, параболического, полигонального

и близких к ним очертаний, а также для консольных элементов следует

определять по формуле

коэффициент, изменяющийся от 1 до 0, учитывающий дополнительный момент от продольной силы вследствие прогиба элемента, определяемый по формуле

изгибающий момент в расчетном сечении без учета дополнительного момента от продольной силы;

коэффициент, определяемый по формуле (8) п.4.3.

2. В случаях, когда в шарнирно-опертых элементах эпюры изгибающих моментов имеют треугольное или прямоугольное очертание, коэффициент по формуле (30) следует умножать на поправочный коэффициент :

(31)

3. При несимметричном загружении шарнирно-опертых элементов величину изгибающего момента следует определять по формуле

(32)

изгибающие моменты в расчетном сечении элемента от симметричной и кососимметричной составляющих нагрузки;

коэффициенты, определяемые по формуле (30) при величинах гибкостей, соответствующих симметричной и кососимметричной формам продольного изгиба.

4. Для элементов переменного по высоте сечения площадь в формуле (30) следует принимать для максимального по высоте сечения, а коэффициент следует умножать на коэффициент принимаемый по табл.1 прил.4.

5. При отношении напряжений от изгиба к напряжениям от сжатия менее 0,1 сжато-изгибаемые элементы следует проверять также на устойчивость по формуле (6) без учета изгибающего момента.

4.18. Расчет на устойчивость плоской формы деформирования сжато-изгибаемых элементов следует производить по формуле

(33)

площадь брутто с максимальными размерами сечения элемента на участке ;

для элементов без закрепления растянутой зоны из плоскости деформирования и для элементов, имеющих такие закрепления;

коэффициент продольного изгиба, определяемый по формуле (8) для гибкости участка элемента расчетной длиной из плоскости деформирования;

коэффициент, определяемый по формуле (23).

При наличии в элементе на участке закреплений из плоскости деформирования со стороны растянутой от момента кромки коэффициент следует умножать на коэффициент определяемый по формуле (24), а коэффициент - на коэффициент по формуле

(34)

При расчете элементов переменного по высоте сечения, не имеющих закреплений из плоскости по растянутой от момента кромке или при коэффициенты и , определяемые по формулам (8) и (23), следует дополнительно умножать соответственно на коэффициенты и , приведенные в табл.1 и 2 прил.4. При

4.19. В составных сжато-изгибаемых элементах следует проверять устойчивость наиболее напряженной ветви, если расчетная длина ее превышает семь толщин ветви, по формуле

(35)

Устойчивость сжато-изгибаемого составного элемента из плоскости изгиба следует проверять по формуле (6) без учета изгибающего момента.

4.20. Количество срезов связей , равномерно расставленных в каждом шве сжато-изгибаемого составного элемента на участке с однозначной эпюрой поперечных сил при приложении сжимающей силы по всему сечению, должно удовлетворять условию

где коэффициент принимается по табл.1 прил.4.

статический момент брутто сдвигаемой части поперечного сечения относительно нейтральной оси;

при шарнирно-закрепленных концах, а также при шарнирном закреплении в промежуточных точках элемента - 1;

при одном шарнирно-закрепленном и другом защемленном конце - 0,8;

при одном защемленном и другом свободном нагруженном конце - 2,2;

при обоих защемленных концах - 0,65.

В случае распределенной равномерно по длине элемента продольной нагрузки коэффициент следует принимать равным:

при обоих шарнирно-закрепленных концах - 0,73;

при одном защемленном и другом свободном конце - 1,2.

Расчетную длину пересекающихся элементов, соединенных между собой в месте пересечения, следует принимать равной:

при проверке устойчивости в плоскости конструкций - расстоянию от центра узла до точки пересечения элементов;

при проверке устойчивости из плоскости конструкции:

а) в случае пересечения двух сжатых элементов - полной длине элемента;

Наименование элементов конструкций

Предельная гибкость

1. Сжатые пояса, опорные раскосы и опорные стойки ферм, колонны

2. Прочие сжатые элементы ферм и других сквозных конструкций

3. Сжатые элементы связей

4. Растянутые пояса ферм в вертикальной плоскости

5. Прочие растянутые элементы ферм и других сквозных конструкций

Для опор воздушных линий электропередачи

Величину следует принимать не менее 0,5;

в) в случае пересечения сжатого элемента с растянутым равной по величине силой - наибольшей длине сжатого элемента, измеряемой от центра узла до точки пересечения элементов.

Если пересекающиеся элементы имеют составное сечение, то в формулу (37) следует подставлять соответствующие значения гибкости, определяемые по формуле (11).

4.22. Гибкость элементов и их отдельных ветвей в деревянных конструкциях не должна превышать значений, указанных в табл.14.

Особенности расчета клееных элементов

из фанеры с древесиной

4.23. Расчет клееных элементов из фанеры с древесиной следует выполнять по методу приведенного поперечного сечения.

4.24. Прочность растянутой фанерной обшивки плит (рис.3) и панелей следует проверять по формуле

момент сопротивления поперечного сечения, приведенного к фанере, который следует определять в соответствии с указаниями п.4.25.

4.25. Приведенный момент сопротивления поперечного сечения клееных плит из фанеры с древесиной следует определять по формуле

расстояние от центра тяжести приведенного сечения до внешней грани обшивки;

Рис.3. Поперечное сечение клееных плит из фанеры и древесины

статический момент сдвигаемой части приведенного сечения относительно нейтральной оси;

расчетное сопротивление скалыванию древесины вдоль волокон или фанеры вдоль волокон наружных слоев;

расчетная ширина сечения, которую следует принимать равной суммарной ширине ребер каркаса.

А - площадь сечения брутто;

A bn - площадь сечения болта нетто;

A d - площадь сечения раскоса;

A f - площадь сечения полки (пояса);

А n - площадь сечения нетто;

A w - площадь сечения стенки;

A wf - площадь сечения по металлу углового шва;

A wz - площадь сечения по металлу границы сплавления;

Е - модуль упругости;

F - сила;

G - модуль сдвига;

J b - момент инерции сечения ветви;

J m ; J d - моменты инерции сечений пояса и раскоса фермы;

J s - момент инерции сечения ребра, планки;

J sl - момент инерции сечения продольного ребра;

J t - момент инерции кручения балки, рельса;

J x ; J y - моменты инерции сечения брутто относительно осей соответственно x-x и y-y ;

J xn ; J yn - то же, сечения нетто;

M - момент, изгибающий момент;

M x ; M y - моменты относительно осей соответственно x-x и y-y ;

N - продольная сила;

N ad - дополнительное усилие;

N bm - продольная сила от момента в ветви колонны;

Q - поперечная сила, сила сдвига;

Q fic - условная поперечная сила для соединительных элементов;

Q s - условная поперечная сила, приходящаяся на систему планок, расположенных в одной плоскости;

R ba - расчетное сопротивление растяжению фундаментных болтов;

R bh - расчетное сопротивление растяжению высокопрочных болтов;

R bp - расчетное сопротивление смятию болтовых соединений;

R bs - расчетное сопротивление срезу болтов;

R bt - расчетное сопротивление болтов растяжению;

R bun - нормативное сопротивление стали болтов, принимаемое равным временному сопротивлению σ в по государственным стандартам и техническим условиям на болты;

R bv - расчетное сопротивление растяжению U-образных болтов;

R cd - расчетное сопротивление диаметральному сжатию катков (при свободном касании в конструкциях с ограниченной подвижностью);

R dh - расчетное сопротивление растяжению высокопрочной проволоки;

R lp - расчетное сопротивление местному смятию в цилиндрических шарнирах (цапфах) при плотном касании;

R p - расчетное сопротивление стали смятию торцевой поверхности (при наличии пригонки);

R s - расчетное сопротивление стали сдвигу;

R th - расчетное сопротивление растяжению стали в направлении толщины проката;

R u - расчетное сопротивление стали растяжению, сжатию, изгибу по временному сопротивлению;

R un - временное сопротивление стали разрыву, принимаемое равным минимальному значению σ в по государственным стандартам и техническим условиям на сталь;

R wf - расчетное сопротивление угловых швов срезу (условному) по металлу шва;

R wu - расчетное сопротивление стыковых сварных соединений сжатию, растяжению, изгибу по временному сопротивлению;

R wun - нормативное сопротивление металла шва по временному сопротивлению;

R ws - расчетное сопротивление стыковых сварных соединений сдвигу;

R wy - расчетное сопротивление стыковых сварных соединений сжатию, растяжению и изгибу по пределу текучести;

R wz - расчетное сопротивление угловых швов срезу (условному) по металлу границы сплавления;

R y - расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести;

R yn - предел текучести стали, принимаемый равным значению предела текучести σ т по государственным стандартам и техническим условиям на сталь;

S - статический момент сдвигаемой части сечения брутто относительно нейтральной оси;

W x ; W y - моменты сопротивления сечения брутто относительно осей соответственно x-x и y-y;

W xn ; W yn - моменты сопротивления сечения нетто относительно осей соответственно x-x и y-y ;

b - ширина;

b ef - расчетная ширина;

bf - ширина полки (пояса);

b h - ширина выступающей части ребра, свеса;

c ; c x ; c y - коэффициенты для расчета на прочность с учетом развития пластических деформаций при изгибе относительно осей соответственно x-x, y-y ;

е - эксцентриситет силы;

h - высота;

h ef - расчетная высота стенки;

h w - высота стенки;

i - радиус инерции сечения;

i min - наименьший радиус инерции сечения;

i x ; i y - радиусы инерции сечения относительно осей соответственно x-x и y-y ;

k f - катет углового шва;

l - длина, пролет;

l c - длина стойки, колонны, распорки;

l d - длина раскоса;

l ef - расчетная, условная длина;

l m - длина панели пояса фермы или колонны;

l s - длина планки;

l w - длина сварного шва;

l x ; l у - расчетные длины элемента в плоскостях, перпендикулярных осям соответственно x-x и y-y ;

m - относительный эксцентриситет (m = eA / W c );

m ef - приведенный относительный эксцентриситет (m ef = );

r - радиус;

t - толщина;

t f - толщина полки (пояса);

t w - толщина стенки;

β f и β z - коэффициенты для расчета углового шва соответственно по металлу шва и по металлу границы сплавления;

γ b - коэффициент условий работы соединения;

γ c - коэффициент условий работы;

γ n - коэффициент надежности по назначению;

γ m - коэффициент надежности по материалу;

γ u - коэффициент надежности в расчетах по временному сопротивлению;

η - коэффициент влияния формы сечения;

λ - гибкость (λ = l ef / i );

Условная гибкость ();

λ ef - приведенная гибкость стержня сквозного сечения;

Условная приведенная гибкость стержня сквозного сечения ();

Условная гибкость стенки ();

Наибольшая условная гибкость стенки;

λ x ; λ y - расчетные гибкости элемента в плоскостях, перпендикулярных осям соответственно x-x и y-y ;

v - коэффициент поперечной деформации стали (Пуассона);

σ loc - местное напряжение;

σ x ; σ y - нормальные напряжения, параллельные осям соответственно x-x и y-y;

τ xy - касательное напряжение;

φ (х , y ) - коэффициент продольного изгиба;

φ b - коэффициент снижения расчетных сопротивлений при изгибно-крутильной форме потери устойчивости балок;

φ e - коэффициент снижения расчетных сопротивлений при внецентренном сжатии.

1. Общие положения. 2 2. Материалы для конструкций и соединений. 3 3. Расчетные характеристики материалов и соединений. 4 4*. Учет условий работы и назначения конструкций. 6 5. Расчет элементов стальных конструкций на осевые силы и изгиб. 7 Центрально-растянутые и центрально-сжатые элементы.. 7 Изгибаемые элементы.. 11 Элементы, подверженные действию осевой силы с изгибом.. 15 Опорные части. 19 6. Расчетные длины и предельные гибкости элементов стальных конструкций. 19 Расчетные длины элементов плоских ферм и связей. 19 Расчетные длины элементов пространственных решетчатых конструкций. 21 Расчетные длины элементов структурных конструкций. 23 Расчетные длины колонн (стоек) 23 Предельные гибкости сжатых элементов. 25 Предельные гибкости растянутых элементов. 25 7. Проверка устойчивости стенок и поясных листов изгибаемых и сжатых элементов. 26 Стенки балок. 26 Стенки центрально внецентренно-сжатых и сжато-изгибаемых элементов. 32 Поясные листы (полки) центрально-, внецентренно-сжатых, сжато-изгибаемых и изгибаемых элементов. 34 8. Расчет листовых конструкций. 35 Расчет на прочность. 35 Расчет на устойчивость. 37 Основные требования к расчету металлических мембранных конструкций. 39 9. Расчет элементов стальных конструкций на выносливость. 39 10. Расчет элементов стальных конструкций на прочность с учетом хрупкого разрушения. 40 11. Расчет соединений стальных конструкций. 40 Сварные соединения. 40 Болтовые соединения. 42 Соединения на высокопрочных болтах. 43 Соединения с фрезерованными торцами. 44 Поясные соединения в составных балках. 44 12. Общие требования по проектированию стальных конструкций. 45 Основные положения. 45 Сварные соединения. 46 Болтовые соединения и соединения на высокопрочных болтах. 46 13. Дополнительные требования по проектированию производственных зданий и сооружений. 48 Относительные прогибы и отклонения конструкций. 48 Расстояния между температурными швами. 48 Фермы и структурные плиты покрытий. 48 Колонны.. 49 Связи. 49 Балки. 49 Подкрановые балки. 50 Листовые конструкции. 51 Монтажные крепления. 52 14. Дополнительные требования по проектированию жилых и общественных зданий и сооружений. 52 Каркасные здания. 52 Висячие покрытия. 52 15*. Дополнительные требования по проектированию опор воздушных линий электропередачи, конструкций открытых распределительных устройств и линий контактных сетей транспорта. 53 16. Дополнительные требования по проектированию конструкций антенных сооружений (ас) связи высотой до 500 м.. 55 17. Дополнительные требования по проектированию гидротехнических сооружений речных. 58 18. Дополнительные требования по проектированию балок с гибкой стенкой. 59 19. Дополнительные требования по проектированию балок с перфорированной стенкой. 60 20*. Дополнительные требования по проектированию конструкций зданий и сооружений при реконструкции. 61 Приложение 1. Материалы для стальных конструкций и их расчетные сопротивления. 64 Приложение 2. Материалы для соединений стальных конструкций и их расчетные сопротивления. 68 Приложение 3. Физические характеристики материалов. 71 Приложение 4*. Коэффициенты условий работы для растянутого одиночного уголка, прикрепляемого одной полкой болтами. 72 Приложение 5. Коэффициенты для расчета на прочность элементов стальных конструкций с учетом развития пластических деформаций. 72 Приложение 6. Коэффициенты для расчета на устойчивость центрально-, внецентренно-сжатых и сжато-изгибаемых элементов. 73 Приложение 7*. Коэффициенты φ b для расчета балок на устойчивость. 82 Приложение 8. Таблицы для расчета элементов на выносливость и с учетом хрупкого разрушения. 85 Приложение 8, а. Определение свойств металла. 88 Приложение 9*. Основные буквенные обозначения величин. 89

Западно-сибирским металлургическим комбинатом освоено производство фасонного проката (уголки равнополочные, швеллеры, двутавры) с толщиной полки до 10 мм включительно по ТУ 14-11-302-94 «Прокат фасонный С345 из углеродистой стали, модифицированной ниобием», разработанным комбинатом, АО «Уральский институт металлов» и согласованным ЦНИИСК им. Кучеренко.

Главтехнормирование сообщает, что фасонный прокат из стали С345 категорий 1 и 3 по ТУ 14-11-302-94 может применяться в соответствии со СНиП II-23-81 «Стальные конструкции» (табл. 50) в тех же конструкциях, для которых предусмотрен прокат из стали С345 категорий 1 и 3 по ГОСТ 27772-88.

Начальник Главтехнормирования В.В. Тищенко

Введение

Металлургической промышленностью освоено производство проката для строительных металлоконструкций и экономно-легированной стали С315. Упрочнение, как правило, достигается микролегированием малоуглеродистой спокойной стали каким-либо из элементов: титаном, ниобием, ванадием или нитридами. Легирование может сочетаться с контролируемой прокаткой или термической обработкой.

Достигнутые объемы производства листа и фасонных профилей из новой стали С315 позволяют полностью удовлетворить потребности строительства в прокате с прочностными характеристиками и хладостойкостью, близкими к нормам для низколегированной стали по ГОСТ 27772-88.

1. Нормативная документация на прокат

В настоящее время разработана серия технических условий на прокат из стали С315.

ТУ 14-102-132-92 «Прокат фасонный из стали С315». Держатель подлинника и изготовитель проката - Нижне-Тагильский металлургический комбинат, сортамент - швеллеры по ГОСТ 8240, равнополочные угловые профили, неравнополочные угловые профили, двутавры обыкновенные и с параллельными гранями полок.

ТУ 14-1-5140-92 «Прокат для строительных стальных конструкций. Общие технические условия». Держатель подлинника - ЦНИИЧМ, изготовитель проката - Нижне-Тагильский металлургический комбинат, сортамент - двутавры по ГОСТ 26020, ТУ 14-2-427-80.

ТУ 14-104-133-92 «Прокат повышенной прочности для строительных стальных конструкций». Держатель подлинника и изготовитель проката - Орско-Халиловский металлургический комбинат, сортамент - лист толщиной от 6 до 50 мм.

ТУ 14-1-5143-92 «Прокат листовой и рулонный повышенной прочности и хладостойкости». Держатель подлинника - ЦНИИЧМ, изготовитель проката - Ново-Липецкий металлургический комбинат, сортамент - листовой прокат по ГОСТ 19903 толщиной до 14 мм включительно.

ТУ 14-105-554-92 «Листовой прокат повышенной прочности и хладостойкости». Держатель подлинника и изготовитель проката - Череповецкий металлургический комбинат, сортамент - листовой прокат по ГОСТ 19903 толщиной до 12 мм включительно.

2. Общие положения

2.1. Прокат из стали С315 целесообразно применять вместо проката из малоуглеродистой стали С255, С285 по ГОСТ 27772-88 для групп конструкций по СНиП II-23-8I, применение которого в климатических районах строительства с расчетной температурой минус 40 °С не допускается. При этом необходимо использовать повышенную прочность проката из стали С315.

3. Материалы для конструкций

3.1. Прокат из стали С315 поставляется четырех категорий в зависимости от требований по испытаниям на ударный изгиб (категории приняты одинаковыми с прокатом из стали С345 по ГОСТ 27772-88).

3.2. Прокат из стали С315 можно применять в конструкциях, руководствуясь данными табл. 1.

Таблица 1

* При толщине проката не более 10 мм.

4. Расчетные характеристики проката и соединений

4.1. Нормативные и расчетные сопротивления проката из стали С315 принимаются в соответствии с табл. 2.

Таблица 2

Толщина проката, мм Нормативное сопротивление проката, МПа (кгс/мм 2) Расчетное сопротивление проката, МПа (кгс/мм 2)
фасонного листового, широкополосного универсального фасонного
R yn R un R yn R un R y R u R y R u
2-10 315 (32) 440 (45) 315 (32) 440 (45) 305 (3100) 430 (4400) 305 (3100) 430 (4400)
10-20 295 (30) 420 (43) 295 (30) 420 (43) 290 (2950) 410 (4200) 290 (2950) 410 (4200)
20-40 275 (28) 410 (42) 275 (28) 410 (42) 270 (2750) 400 (4100) 270 (2750) 400 (4100)
40-60 255 (26) 400 (41) - - 250 (2550) 390 (4000) - -

4.2. Расчетные сопротивления сварных соединений проката стали С315 для различных видов соединений и напряженных соединений следует определять по СНиП II-23-81* (п. 3.4, табл. 3).

4.3. Расчетные сопротивления смятию элементов, соединенных болтами, следует определять по СНиП II-23-81* (п. 3.5, табл. 5*).

5. Расчет соединений

5.1. Расчет сварных и болтовых соединений проката стали С315 выполняется в соответствии с требованиями СНиП II-23-81.

6. Изготовление конструкций

6.1. При изготовлении строительных конструкций из стали С315 следует использовать ту же технологию, что и для стали С255 и С285 по ГОСТ 27772-88.

6.2. Материалы для сварки проката стали С315 следует принимать в соответствии с требованиями СНиП II-23-81* (табл. 55*) для проката стали С255, С285 и С345 - по ГОСТ 27772-88, учитывая расчетные сопротивления проката из стали С315 для разных толщин.

О применении в строительстве толстолистового проката повышенной прочности по ТУ 14-104-133-92

Минстрой России направил министерствам и ведомствам Российской Федерации, госстроям республик в составе Российской Федерации, проектным и научно-исследовательским институтам письмо № 13-227 от 11 ноября 1992 г. следующего содержания.

Орско-Халиловским металлургическим комбинатом освоено производство толстолистового проката толщиной 6-50 мм по техническим условиям ТУ 14-104-133-92 «Прокат повышенной прочности для строительных стальных конструкций», разработанным комбинатом, ИТМТ ЦНИИчермета и ЦНИИСК им. Кучеренко.

Комбинатом за счет микролегирования малоуглеродистой спокойной стали титаном или ванадием (или тем и другим) с возможным применением термической обработки и контролируемых режимов прокатки получен новый высокоэффективный вид металлопроката из сталей С315 и С345Э, свойства которого не уступают показателям проката из низколегированных сталей по ГОСТ 27772-88. Способ микролегирования, вид термической обработки и режимы прокатки выбирает изготовитель. Прокат поставляется четырех категорий в зависимости от требований по испытанию на ударный изгиб, принятых в ГОСТ 27772-88 и СНиП II-23-81*, а также в стандарте ФРГ ДИН 17100 (на образцах с острым надрезом). Категория и вид испытания на ударный изгиб указывается потребителем в заказе на металлопрокат.

Минстрой России сообщает, что прокат из стали С345Э по ТУ 14-104-133-92 может применяться наряду и взамен проката из стали С345 по ГОСТ 27772-88 в конструкциях, запроектированных по СНиП II-23-81* «Стальные конструкции», без пересчета сечений элементов и их соединений. Область применения, нормативные и расчетные сопротивления проката из стали С315 по ТУ 14-104-133-92, а также применяемые материалы для сварки, расчетные сопротивления сварных соединений и смятию элементов, соединяемых болтами, следует принимать по рекомендациям ЦНИИСК им. Кучеренко, публикуемым ниже.

Нижнетагильским металлургическим комбинатом освоено производство фасонного проката - швеллеров по ГОСТ 8240, уголков по ГОСТ 8509 и ГОСТ 8510, двутавров по ГОСТ 8239, ГОСТ 19425, ТУ 14-2-427-80, широкополочных двутавров по ГОСТ 26020 по техническим условиям ТУ 14-1-5140-82 «Прокат фасонный повышенной прочности для строительных стальных конструкций», разработанным комбинатом, ЦНИИчерметом им. Бардина и ЦНИИСК им. Кучеренко.

Комбинатом за счет рационального подбора химического состава малоуглеродистой стали, микролегирования и насыщения ее нитридами и карбонитридами с измельчением зерна в процессе прокатки получен высокоэффективный вид проката из сталей С315, С345 и С375, свойства которого не уступают показателям проката из низколегированных сталей по ГОСТ 27772.

Прокат поставляется четырех категорий в зависимости от требований по испытанию на ударный изгиб, принятых в ГОСТ 27772-88 и СНиП II-23-81*, а также в стандарте ФРГ DIN 17100 (на образцах с острым надрезом). Категория и вид испытания на ударный изгиб указывается потребителем в заказе на металлопрокат.

Госстрой России сообщает, что прокат из стали С345 и С375 по ТУ 14-1-5140-92 может применяться наряду и взамен проката из стали С345 и С375 по ГОСТ 27772-88 в конструкциях, запроектированных по СНиП II-23-81* «Стальные конструкции», без пересчета сечений элементов и их соединений. Область применения, нормативные и расчетные сопротивления проката из стали С315 по ТУ 14-1-3140-92, а также применяемые материалы для сварки, расчетные сопротивления сварных соединений, смятию элементов, соединяемых болтами, следует принимать по «Рекомендациям» ЦНИИСК им. Кучеренко, которые опубликованы в журнале «Бюллетень строительной техники» № 1 за 1993 г.

Заместитель Председателя В.А. Алексеев

Исп. Поддубный В.П.

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие нормы следует соблюдать при проектировании стальных строительных конструкций зданий и сооружений различного назначения.

Нормы не распространяются на проектирование стальных конструкций мостов, транспортных тоннелей и труб под насыпями.

При проектировании стальных конструкций, находящихся в особых условиях эксплуатации (например, конструкций доменных печей, магистральных и технологических трубопроводов, резервуаров специального назначения, конструкций зданий, подвергающихся сейсмическим, интенсивным температурным воздействиям или воздействиям агрессивных сред, конструкций морских гидротехнических сооружений), конструкций уникальных зданий и сооружений, а также специальных видов конструкций (например, предварительно напряженных, пространственных, висячих) следует соблюдать дополнительные требования, отражающие особенности работы этих конструкций, предусмотренные соответствующими нормативными документами, утвержденными или согласованными Госстроем СССР.

1.2. При проектировании стальных конструкций следует соблюдать нормы СНиП по защите строительных конструкций от коррозии и противопожарные нормы проектирования зданий и сооружений. Увеличение толщины проката и стенок труб с целью защиты конструкций от коррозии и повышения предела огнестойкости конструкций не допускается.

Все конструкции должны быть доступны для наблюдения, очистки, окраски, а также не должны задерживать влагу и затруднять проветривание. Замкнутые профили должны быть герметизированы.

1.3*. При проектировании стельных конструкций следует:

выбирать оптимальные в технико-экономическом отношении схемы сооружений и сечения элементов;

применять экономичные профили проката и эффективные стали;

применять для зданий и сооружений, как правило, унифицированные типовые или стандартные конструкции;

применять прогрессивные конструкции (пространственные системы из стандартных элементов; конструкции, совмещающие несущие и ограждающие функции; предварительно напряженные, вантовые, тонколистовые и комбинированные конструкции из разных сталей);

предусматривать технологичность изготовления и монтажа конструкций;

применять конструкции, обеспечивающие наименьшую трудоемкость их изготовления, транспортирования и монтажа;

предусматривать, как правило, поточное изготовление конструкций и их конвейерный или крупноблочный монтаж;

предусматривать применение заводских соединений прогрессивных типов (автоматической и полуавтоматической сварки, соединений фланцевых, с фрезерованными торцами, на болтах, в том числе на высокопрочных и др.);

предусматривать, как правило, монтажные соединения на болтах, в том числе на высокопрочных; сварные монтажные соединения допускаются при соответствующем обосновании;

выполнять требования государственных стандартов на конструкции соответствующего вида.

1.4. При проектировании зданий и сооружений необходимо принимать конструктивные схемы, обеспечивающие прочность, устойчивость и пространственную неизменяемость зданий и сооружений в целом, а также их отдельных элементов при транспортировании, монтаже и эксплуатации.

1.5*. Стали и материалы соединений, ограничения по применению сталей С345Т и С375Т, а также дополнительные требования к поставляемой стали, предусмотренные государственными стандартами и стандартами СЭВ или техническими условиями, следует указывать в рабочих (КМ) и деталировочных (КМД) чертежах стальных конструкций и в документации на заказ материалов.

В зависимости от особенностей конструкций и их узлов необходимо при заказе стали указывать класс сплошности по ГОСТ 27772-88.

1.6*. Стальные конструкции и их расчет должны удовлетворять требованиям ГОСТ 27751-88 «Надежность строительных конструкций и оснований. Основные положения по расчету» и СТ СЭВ 3972-83 «Надежность строительных конструкций и оснований. Конструкции стальные. Основные положения по расчету».

1.7. Расчетные схемы и основные предпосылки расчета должны отражать действительные условия работы стальных конструкций.

Стальные конструкции следует, как правило, рассчитывать как единые пространственные системы.

При разделении единых пространственных систем на отдельные плоские конструкции следует учитывать взаимодействие элементов между собой и с основанием.

Выбор расчетных схем, а также методов расчета стальных конструкций необходимо производить с учетом эффективного использования ЭВМ.

1.8. Расчет стальных конструкций следует, как правило, выполнять с учетом неупругих деформаций стали.

Для статически неопределимых конструкций, методика расчета которых с учетом неупругих деформаций стали не разработана, расчетные усилия (изгибающие и крутящие моменты, продольные и поперечные силы) следует определять в предположении упругих деформаций стали по недеформированной схеме.

При соответствующем технико-экономическом обосновании расчет допускается производить по деформированной схеме, учитывающей влияние перемещений конструкций под нагрузкой.

1.9. Элементы стальных конструкций должны иметь минимальные сечения, удовлетворяющие требованиям настоящих норм с учетом сортамента на прокат и трубы. В составных сечениях, устанавливаемых расчетом, недонапряжение не должно превышать 5 %.

Изначально металл как наиболее прочный материал служил защитным целям – ограждения, ворота, решетки. Затем стали использовать чугунные столбы и арки. Расширенный рост промышленного производства потребовал строительства сооружений с большими пролетами, что стимулировало появление прокатных балок и ферм. В итоге металлический каркас стал ключевым фактором развития архитектурной формы, так как позволил освободить стены от функции несущей конструкции.

Центрально-растянутые и центрально-сжатые стальные элементы. Расчет па прочность элементов, подверженных центральному растяжению или сжатию силой N, следует выполнять по формуле

где – расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести;– площадь сечения нетто, т.е. площадь за вычетом ослаблений сечения;– коэффициент условий работы, принимаемый по таблицам СНИП Н-23–81* "Стальные конструкции".

Пример 3.1. В стенке стального двутавра № 20 вырезано отверстие диаметром d = = 10 см (рис. 3.7). Толщина стенки двутавра – s – 5,2 мм, площадь поперечного сечения брутто – см2.

Требуется определить допускаемую нагрузку, которая может быть приложена вдоль продольной оси ослабленного двутавра. Расчетное сопротивление стали принять кг/см2, а .

Решение

Вычисляем площадь сечения нетто:

где – площадь сечения брутто, т.е. площадь полного поперечного сечения без учета ослаблений, принимается по ГОСТ 8239–89 "Двутавры стальные горячекатаные".

Определяем допускаемую нагрузку:

Определение абсолютного удлинения центрально-растянутого стального стержня

Для стержня со ступенчатым изменением площади поперечного сечения и нормальной силы общее удлинениевычисляется алгебраическим суммированием удлинений каждого участка:

где п – число участков; i – номер участка (i = 1, 2,..., п).

Удлинение от собственного веса стержня постоянного сечения определяется по формуле

где γ – удельный вес материала стержня.

Расчет на устойчивость

Расчет на устойчивость сплошностенчатых элементов, подверженных центральному сжатию силой N , следует выполнять по формуле

где А – площадь сечения брутто; φ – коэффициент продольного изгиба, принимаемый в зависимости от гибкости

Рис. 3.7.

и расчетного сопротивления сталипо таблице в СНИП Н-23–81 * "Стальные конструкции"; μ – коэффициент приведения длины; – минимальный радиус инерции поперечного сечения; Гибкости λ сжатых или растянутых элементов не должны превышать значений, приведенных в СНИП "Стальные конструкции".

Расчет составных элементов из уголков, швеллеров (рис. 3.8) и т.п., соединенных вплотную или через прокладки, следует выполнять как сплошностенных, при условии что наибольшие расстояния в свету на участках между приваренными планками или между центрами крайних болтов не превышают для сжатых элементов и для растянутых элементов.

Рис. 3.8.

Изгибаемые стальные элементы

Расчет изгибаемых в одной из главных плоскостей балок выполняют по формуле

где М – максимальный изгибающий момент; – момент сопротивления сечения нетто.

Значения касательных напряжений τ в середине изгибаемых элементов должны удовлетворять условию

где Q – поперечная сила в сечении; – статический момент половины сечения относительно главной оси z; – осевой момент инерции; t – толщина стенки; – расчетное сопротивление стали сдвигу; – предел текучести стали, принимаемый по государственным стандартам и техническим условиям на сталь; – коэффициент надежности по материалу, принимаемый по СНИП 11-23–81* "Стальные конструкции".

Пример 3.2. Требуется подобрать поперечное сечение однопролетной стальной балки, нагруженной равномерно распределенной нагрузкой q = 16 кН/м, длина банки l = 4 м, , МПа. Поперечное сечение балки – прямоугольное с отношением высоты h к ширине b балки равным 3 (h/b = 3).